Process fault prognosis using a fuzzy-adaptive unscented Kalman predictor
نویسندگان
چکیده
By monitoring the future process status via information prediction, process fault prognosis is able to give an early alarm and therefore prevent faults, when the faults are still in their early stages. A fuzzy-adaptive unscented Kalman filter (FAUKF)-based predictor is proposed to improve the tracking and forecasting capability for process fault prognosis. The predictor combines the strong tracking concept and fuzzy logic idea. Similar to the standard adaptive unscented Kalman filter (AUKF) that employs an adaptive parameter to correct the estimation error covariance, a Takagi–Sugeno fuzzy logic system is designed to provide a better adaptive parameter for smoothing this regulation. Compared with the standard AUKF, the proposed FAUKF has the same strong tracking ability but does not suffer from the drawback of serious tracking fluctuation. Two simulation examples demonstrate the effectiveness of the proposed predictor. Copyright 2011 John Wiley & Sons, Ltd.
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملPerformance Analysis of Unscented Kalman Filter using Fuzzy Logic for Tracking Applications
-Target tracking is one of the major aspects often used in sonar applications, surveillance systems, communication systems, embedded applications etc. To obtain kinematic components of a moving target such as position, velocity, and acceleration, one of the most used approaches in target tracking is stochastic estimation approach. Movement of the target is described by state space dynamic syste...
متن کاملFuzzy Adaptive Interacting Multiple Model Nonlinear Filter for Integrated Navigation Sensor Fusion
In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as ...
متن کاملFault Modeling, Detection and Classification using Fuzzy Logic, Kalman Filter and Genetic Neuro-Fuzzy Systems
In this paper, an efficient scheme has been proposed to model, detect and classify the fault. The modeling of fault has been proposed with the fuzzy logic using membership function. Fault detection of the unprecedented changes in system reliability and find the failed component state by classifying the faults is proposed using kalman filter and hybrid neurofuzzy computing techniques respectivel...
متن کاملStator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کامل